Analysis of combustion gases from large-scale electric vehicle fire tests
Благодарим вас за выбор компании Automatic Translation. В настоящее время мы предлагаем переводы с английского на французский и немецкий языки, в ближайшем будущем будут добавлены другие языки перевода. Пожалуйста, имейте в виду, что эти переводы генерируются сторонним программным обеспечением AI. Хотя мы обнаружили, что переводы в основном правильные, они могут быть не идеальными в каждом случае. Чтобы убедиться в правильности прочитанной информации, обратитесь к оригиналу статьи на английском языке. Если вы обнаружили ошибку в переводе, на которую хотели бы обратить наше внимание, мы будем очень рады, если вы сообщите нам об этом. Мы можем исправить любой текст или раздел, как только узнаем об этом. Переведено с помощью DeepL.com (бесплатная версия). Пожалуйста, свяжитесь с нашим веб-мастером, чтобы сообщить нам о любых ошибках перевода.
Fires involving electric vehicles have attracted considerable attention in the media. In particular, the toxic gases released upon combustion of electric vehicles and lithium-ion batteries has been a major concern. A RISE study of these issues is now published in a 2023 Fire Safety Journal.
In this study, the results of six large-scale vehicle fire tests are presented including three electric vehicles, two internal combustion engine vehicles, and one electric vehicle with the battery pack removed.
Additionally, separate battery component tests were performed. In two of the vehicle fire tests a sprinkler system was used to assess the effect of water application on the combustion gases. Furthermore, calculations of the heat release rate, peak heat release rate and total heat release were performed, as well as chemical analysis of gas and soot.
Peak heat release rate and total heat release were affected by the fire scenario and vehicle model, but not significantly by the type of powertrain.
Regarding the combustion gases, hydrogen fluoride represented the largest difference between electric vehicles and internal combustion engine vehicles.
Additionally, battery specific metals such as manganese, nickel, cobalt and lithium were found in higher concentrations in the electric vehicle tests than in the internal combustion vehicle tests, in which larger quantities of lead were found.
Highlights
- Large-scale fire tests of battery electric vehicles and internal combustion engine vehicles.
- The total heat release was not affected by the type of traction energy.
- A higher concentration of lead was found for the conventional vehicles.
- HF, Ni, Co, Li and Mn, constituted the largest difference in the combustion gases between EVs and ICEVs.
- Water application inhibited the quantification of HF.
Read full article on science direct.com